From classical to current: analyzing peripheral nervous system and spinal cord lineage and fate.

نویسندگان

  • Samantha J Butler
  • Marianne E Bronner
چکیده

During vertebrate development, the central (CNS) and peripheral nervous systems (PNS) arise from the neural plate. Cells at the margin of the neural plate give rise to neural crest cells, which migrate extensively throughout the embryo, contributing to the majority of neurons and all of the glia of the PNS. The rest of the neural plate invaginates to form the neural tube, which expands to form the brain and spinal cord. The emergence of molecular cloning techniques and identification of fluorophores like Green Fluorescent Protein (GFP), together with transgenic and electroporation technologies, have made it possible to easily visualize the cellular and molecular events in play during nervous system formation. These lineage-tracing techniques have precisely demonstrated the migratory pathways followed by neural crest cells and increased knowledge about their differentiation into PNS derivatives. Similarly, in the spinal cord, lineage-tracing techniques have led to a greater understanding of the regional organization of multiple classes of neural progenitor and post-mitotic neurons along the different axes of the spinal cord and how these distinct classes of neurons assemble into the specific neural circuits required to realize their various functions. Here, we review how both classical and modern lineage and marker analyses have expanded our knowledge of early peripheral nervous system and spinal cord development.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P176: Neurological Diseases: Causes, Symptoms and Treatments

The nervous system is an extremely complex communication system that can send and receive large amounts of information simultaneously. The nervous system has two distinct parts: the central nervous system (the brain and the spinal cord) and the peripheral nervous system (the nerves located outside the brain and spinal cord). The main unit of the nervous system is neural cells (neurons). The rou...

متن کامل

Why does the central nervous system not regenerate after injury?

A major problem for neuroscientists and clinicians is why the central nervous system shows ineffective regeneration after injury. Injured peripheral nerve fibers reform their connections, whereas those in injured spinal cord never re-grow. Insights into the mechanisms for repair and restoration of function after spinal cord injury have been obtained by experiments showing that injured nerve cel...

متن کامل

Why does the central nervous system not regenerate after injury?

A major problem for neuroscientists and clinicians is why the central nervous system shows ineffective regeneration after injury. Injured peripheral nerve fibers reform their connections, whereas those in injured spinal cord never re-grow. Insights into the mechanisms for repair and restoration of function after spinal cord injury have been obtained by experiments showing that injured nerve cel...

متن کامل

The Lineage Contribution and Role of Gbx2 in Spinal Cord Development

BACKGROUND Forging a relationship between progenitors with dynamically changing gene expression and their terminal fate is instructive for understanding the logic of how cell-type diversity is established. The mouse spinal cord is an ideal system to study these mechanisms in the context of developmental genetics and nervous system development. Here we focus on the Gastrulation homeobox 2 (Gbx2)...

متن کامل

Nogo-66 Promotes the Differentiation of Neural Progenitors into Astroglial Lineage Cells through mTOR-STAT3 Pathway

BACKGROUND Neural stem/progenitor cells (NPCs) can differentiate into neurons, astrocytes and oligodendrocytes. NPCs are considered valuable for the cell therapy of injuries in the central nervous system (CNS). However, when NPCs are transplanted into the adult mammalian spinal cord, they mostly differentiate into glial lineage. The same results have been observed for endogenous NPCs during spi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Developmental biology

دوره 398 2  شماره 

صفحات  -

تاریخ انتشار 2015